Characterizing Uncertainty Attributable to Surrogate Models

نویسندگان

  • Jie Zhang
  • Ali Mehmani
  • Achille Messac
چکیده

This paper investigates the characterization of the uncertainty in the prediction of surrogate models. In the practice of engineering, where predictive models are pervasively used, the knowledge of the level of modeling error in any region of the design space is uniquely helpful for design exploration and model improvement. The lack of methods that can explore the spatial variation of surrogate error levels in a wide variety of surrogates (i.e., model-independent methods) leaves an important gap in our ability to perform design domain exploration. We develop a novel framework, called domain segmentation based on uncertainty in the surrogate (DSUS) to segregate the design domain based on the level of local errors. The errors in the surrogate estimation are classified into physically meaningful classes based on the user’s understanding of the system and/or the accuracy requirements for the concerned system analysis. The leave-one-out cross-validation technique is used to quantity the local errors. Support vector machine (SVM) is implemented to determine the boundaries between error classes, and to classify any new design point into the pertinent error class. We also investigate the effectiveness of the leave-oneout cross-validation technique in providing a local error measure, through comparison with actual local errors. The utility of the DSUS framework is illustrated using two different surrogate modeling methods: (i) the Kriging method and (ii) the adaptive hybrid functions (AHF). The DSUS framework is applied to a series of standard test problems and engineering problems. In these case studies, the DSUS framework is observed to provide reasonable accuracy in classifying the design-space based on error levels. More than 90% of the test points are accurately classified into the appropriate error classes. [DOI: 10.1115/1.4026150]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surrogate Modeling for Uncertainty Assessment with Application to Aviation Environmental System Models

Numerical simulation models to support decision-making and policy-making processes are often complex, involving many disciplines, many inputs, and long computation times. Inputs to such models are inherently uncertain, leading to uncertainty in model outputs. Characterizing, propagating, and analyzing this uncertainty is critical both to model development and to the effective application of mod...

متن کامل

Probabilistic Evaluation on the Free Vibration of Functionally Graded Material Plates Using 3D Solution and Meta-Model Methods

This paper presents a probabilistic assessment on the free vibration analysis of functionally graded material plates, including layers with magneto-electro-elastic properties, using the 3D solution and surrogate models. The plate is located on an elastic foundation and the intra-layer slipping effect is also considered in the analysis by employing the generalized intra-layer spring model. Due t...

متن کامل

Absorbing Markov Chain Models to Determine Optimum Process Target Levels in Production Systems with Rework and Scrapping

In this paper, absorbing Markov chain models are developed to determine the optimum process mean levels for both a single-stage and a serial two-stage production system in which items are inspected for conformity with their specification limits. When the value of the quality characteristic of an item falls below a lower limit, the item is scrapped. If it falls above an upper limit, the item is ...

متن کامل

The generation of fuzzy sets and the~construction of~characterizing functions of~fuzzy data

Measurement results contain different kinds of uncertainty. Besides systematic errors andrandom errors individual measurement results are also subject to another type of uncertainty,so-called emph{fuzziness}. It turns out that special fuzzy subsets of the set of real numbers $RR$are useful to model fuzziness of measurement results. These fuzzy subsets $x^*$ are called emph{fuzzy numbers}. The m...

متن کامل

Coupled simulation-optimization model for coastal aquifer management using genetic programming-based ensemble surrogate models and multiple-realization optimization

ion in this study area. Different groundwater extraction scenarios were generated using Latin hypercube sampling. The salinity concentrations resulting from each of these pumping patterns are simulated using FEMWATER. The simulated salinity level and the corresponding pumping rates form the input-output pattern. Altogether 230 extraction patterns are used in this study. Different realizations o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014